Опубликовано Оставить комментарий

Укладка и уплотнение бетона.

Укладка бетона при устройстве промышленных полов

Укладка бетонной смеси

Подготовка основания

Укладка и уплотнение бетона требует подготовительных работ. Перед укладкой бетонной смеси необходимо проверить основание. Естественное и искусственное основания (насыпное, грунтовое, дренажи, фильтры и пр.) из нескальных грунтов должны сохранять физико-механические свойства, предусмотренные проектом. Основание ниже проектной отметки должны быть заполнены песком или щебнем с тщательным уплотнением подсыпки. Скальное основание не должно иметь трещины и пустоты. Все слабо закрепленные части удаляют с помощью сжатого воздуха или струей воды под напором, небольшие трещины заделывают цементным раствором, а большие заполняют бетоном.

Переборы против проектных отметок выправляют бетоном низких марок. Перед бетонированием скальное основание промывают, а затем удаляют воду. При укладке бетонной смеси на ранее уложенный бетон основание также предварительно подготавливают: горизонтальные поверхности старого монолитного бетона и сборных элементов очищают от мусора, грязи и цементной пленки. Вертикальные поверхности от цементной пленки очищают только по требованию проекта. Если на основании имеются остатки масел или других жирных веществ, то поверхность необходимо обезжирить, применяя специальные очищающие средства.

Непосредственно перед бетонированием поверхность опалубки, соприкасающуюся с бетоном, а также боковые поверхности сердечников и пробок смазывают известковым молоком, глиняным раствором или эмульсионными составами, которые предотвращают сцепление опалубки с бетоном и не оставляют на нем пятен. Мастер обязан проверить правильность выполнения всех подготовительных работ.

Все закладные детали и материалы, в том числе и арматура должны быть очищены от грязи.

Подача бетонной смеси

Самый быстрый и простой способ подачи бетонной смеси на место укладки это выгрузка непосредственно с лотка миксера. При невозможности подъезда миксера, на расстояние длинны лотка, к месту работ необходимо обеспечить непрерывную и быструю подачу смеси на место укладки.

Во избежание расслоения бетонной смеси для её спуска применяют виброжелоба, наклонные лотки, вертикальные хоботы, виброхоботы и другие приспособления.

Процесс укладки бетонной смеси состоит из двух операций

  • разравнивание;
  • уплотнение.

Чаще всего применяют схему бетонирования с укладкой ровных горизонтальных слоев по всей площади бетонируемой части сооружения. Слои укладываются в одном направлении. Толщина одного слоя не должна иметь перепадов. Укладку рекомендуется проводить непрерывно. Каждый новый слой нужно уложить и уплотнить до того, как схватится предыдущий слой. Но это не единственный способ укладки бетонной смеси. Можно укладывать каждый блок по отдельности на всю высоту. Если при послойной заливке смеси не хватило, то для продолжения работ необходимо дождаться полного схватывания ранее залитого слоя.

Выравнивание

Выравнивание и уплотнение бетона виброрейкой

Наличие в конструкции арматурного каркаса упрощает работу, выравнивание в этом случае вам не нужно. Если же каркаса отсутствует, то следует заранее расставить маяки. Обычно для этого используют арматурные прутья.

При малых объемах бетонируемых конструкций жилых зданий бетонную смесь разравнивают обычно вручную лопатами, а затем уплотняют.

Уплотнение бетона

Укладываемая в бетонируемую конструкцию бетонная смесь в начальном состоянии может не полностью заполнить форму. Бетонная смесь после укладки имеет рыхлую структуру с высокой пористостью и большим объемом вовлеченного воздуха. Если уложить бетонную смесь без обработки, то это приведёт к снижению качества бетона в частности его прочности и внешнего вида - появлению каверн. Поэтому бетонная смесь в блоке должна подвергаться дополнительной обработке с целью повышения плотности и полного заполнения формы. Это достигается путем введения технологической операции, называемой уплотнением. Таким образом, уплотнение бетонной смеси является одним из основных технологических процессов при бетонировании конструкций, в значительной мере определяющим качество уложенного бетона.

Известны следующие способы уплотнения бетона: ручное трамбование; механическое трамбование; вибрирование; вибровакуумирование; центрифугирование; штыкование; самоуплотнение. Применение тех или иных способов уплотнения зависит от подвижности бетонной смеси и типа конструкций.

Рекомендуемые способы уплотнения в зависимости от пластичности (0К) и содержания воды в смеси.
Тип смесиОсадка конуса, смСодержание воды в смеси, л/м3Способ уплотнения
на гравиина щебне
Жёсткие-120-130130-140Механическое трамбование и вибрирование с пригрузом
Малопластичные1-3130-145145-155Вибрирование
Среднепластичные3-6145-160155-170Вибровакуумирование
Высокопластичные6-12160-185175-200Центрифугирование, штыкование
Литые14-16220240Самоуплотнение

Уплотнение бетона методом трамбования осуществляют трамбовками. Трамбовки бывают ручные или пневматические. Пневматические трамбовки применяют при укладке жестких смесей в бетонные и малоармированные конструкции, когда невозможно применить виброуплотнители. Например опасаясь воздействия вибрации на работающее оборудование.

Метод штыкования заключается в проталкивании крупных частиц бетонной смеси, зависающих в густоармированных конструкциях. Данный метод может применяться одновременно с вибрированием. Для штыкования используют шуровки из арматурной стали. Шуровки применяют также для уплотнения расслаивающихся при виброукладке пластичных смесей с осадкой конуса более 8 см.

Поскольку в гидротехническом строительстве для возведения массивных бетонных сооружений применяются в основном жесткие и малопластичные бетонные смеси, то основным методом уплотнения при возведении таких конструкций является виброуплотнение.

Виброуплотнение заключается в передаче бетонной смеси механических колебаний от источника этих колебании - вибратора. Процесс виброуплотнения сводится к разрушению первоначальной трёхфазной структуры укладываемой смеси и её перевод в разжиженное состояние. В разжиженном состоянии смесь легче подчиняется действию силы тяжести и равномерно распределяется по форме, заполняет все промежутки между арматурой и хорошо уплотняется. Зерна крупного заполнителя укладываются компактно, промежутки между ними заполняются цементным раствором. В процессе уплотнения пузырьки воздуха вытесняются наружу. При прекращении вибрирования уложенная в опалубку или форму бетонная смесь густеет.

Виброуплотнение положительно влияет на качество бетона. При виброуплотнении жестких смесей расходуется на 10-15% меньше цемента, поэтому уменьшаются осадка бетона и выделение тепла во время твердения, что снижает опасность возникновения трещин. Уменьшение содержания воды в бетонной смеси при неизменном расходе цемента увеличивает прочность бетона, его водонепроницаемость, морозостойкость, сопротивление истиранию и скорость твердения, улучшает сцепление бетона с арматурой. Кроме того, сокращаются сроки распалубливания.

Степень уплотнения бетона зависит от того, насколько частота, амплитуда и форма колебаний, длительность и мощность вибрирования соответствуют составу бетонной смеси и ее подвижности.

Частота и амплитуда колебаний взаимосвязаны. Это дает возможность применять различные режимы вибрирования для смесей разного состава. Смеси с крупными по величине зернами заполнителя вибрируют при низкой частоте колебаний от 3000 до 6000 колебаний в минуту, но большой амплитуде до 0,7 мм. При уплотнении мелкозернистых бетонных смесей применяют вибрацию высокой частоты до 20000 колебаний в минуту, но меньшей амплитудой 0,15-0,40 мм.

Форма колебаний может быть направленного или ненаправленного действия. Вертикально направленные колебания затухают быстрее, чем горизонтальные, поэтому рациональнее помещать вибратор в толще уплотняемой бетонной смеси, т. е. применять глубинные (погружные) вибраторы и тем самым эффективнее использовать энергию вибрации. Если бетонная смесь содержит заполнители разной крупности, то целесообразно применять поличастотное вибрирование, при котором зона уплотнения подвергается одновременно вибрации высокой и низкой частоты.

В современных виброуплотнителях вибрация создаётся в результате быстрого вращения неуравновешенных масс - одного или нескольких дебалансов, насаженных на ось. Либо планетарным механизмом, в котором колебания создаются бегунком, обкатывающимся вокруг центрального пальца или внутри втулки, закрепленной в корпусе вибратора. Если применять неуравновешенный относительно своей геометрической оси бегунок, при его вращении получаются сложные колебания двух разных частот.

По типу привода виброуплотнители для бетона делят на:

  • электромеханические;
  • электромагнитные;
  • пневматические.

Наиболее широкое распространение получили электромеханические виброуплотнители.

По способу воздействия виброуплотнителя на бетон их разделяют на:

  • глубинные;
  • поверхностные;
  • наружные;
  • виброплощадки;
  • навесные.

Выбор того или иного виброуплотнителя производится в зависимости от вида, формы и размеров бетонируемой конструкции. Например, при бетонировании балок и ростверков применяют глубинные вибраторы - вибробулавы и вибраторы с гибким валом, а при бетонировании плит - поверхностные вибраторы.

Площадочная виброрейка для уплотнение и выравнивание промышленного бетонного пола

Поверхностные вибраторы устанавливается на уложенную бетонную смесь и передают колебания с поверхности через рабочую площадку. Они действует на глубину 10-20 см. Применяются при бетонировании плит, панелей, дорожных и аэродромных покрытий.

Наружные вибраторы прикрепляются к опалубке или другим устройствам и передают колебания через опалубку. Глубина уплотнения смеси 10-20 см. Применяются для уплотнения при бетонировании тонких элементов с повышенной густотой армирования, а также для побуждения выгрузки, бетонной смеси из бункеров, бадей, автосамосвалов.

Виброплощадки, вибростенды или вибростолы применяют главным образом при изготовлении сборных элементов в заводских условиях.

Производитель работ, мастер и бригадир бетонщиков, а также работники строительной лаборатории должны постоянно проверять качество уплотнения смеси. При укладке бетонной смеси горизонтальными слоями необходимо осуществлять контроль за соответствием толщины каждого уложенного слоя согласно требованиям проекта. Также необходимо следить за тщательностью уплотнения каждого слоя до начала укладки последующего.

Уплотнение бетона глубинным вибратором

Наиболее распространенными вибраторами для уплотнения смесей при бетонировании массивных гидротехнических сооружений являются глубинные. Глубинные вибраторы наиболее просты, экономичны и эффективны. Они представляют собой вибробулавы или виброиглы длиной 40-80 см и диаметром 18-150 см. Колебания низких частот воздействуют на крупные частицы, высоких - на более мелкие. 

Радиус действия вибраторов, определяющий размер зоны уплотнения смеси, зависит от частоты колебаний и диаметра вибратора. Для ручных вибраторов он невелик и составляет 25-35 см. Радиус действия вибратора легко определить экспериментально. Для этого достаточно поместить в бетонную смесь стержни диаметром 20 мм длиной, равной длине вибратора, на все более увеличивающемся расстоянии от вибратора. После 1 мин вибрирования все стержни в радиусе действия полностью погрузятся в смесь, вне радиуса действия - частично.

При работе с глубинными виброуплотнителями рекомендуется соблюдать следующие правила

Уплотнение бетона глубинными вибраторами ведется слоями толщиной не более 1,25 длины рабочей части вибратора. Глубина погружения глубинного вибратора в бетонную смесь должна обеспечивать углубление его в ранее уложенный слой на 50-100 мм. Этим обеспечивается совместное вибрирование контактного слоя ранее уложенного и уплотняемого слоя и стирание границы между слоями. При поверхностном вибрировании толщина слоя бетона для неармированных конструкций и конструкций с одиночной арматурой должна быть не более 250 мм. Для конструкций с двойной арматурой - не более 120 мм.

Необходимо следить за тем, чтобы шаг перестановки поверхностных вибраторов обеспечивал перекрытие на 100-200 мм площадкой вибраторов границы уже провибрированного участка, а шаг перестановки внутренних вибраторов не превышал полуторного радиуса (1,5R) их действия при рядовой перестановке. При шахматной перестановке вибраторов их шаг должен быть не более 1,75/R.

Толщина слоя вибрирования должна соответствовать длине рабочей части вибратора и при ручном вибрировании не должна превышать 50 см. Шаг перестановки вибраторов не должен превышать 0,5 радиуса его действия и зависит от толщины слоя, подвижности смеси, крупности заполнителя, вида применяемого цемента и добавок. Поэтому в каждом случае радиус действия следует уточнять на месте.

Лучше вибрировать смесь короткими "рывками" в точках, как мокло ближе расположенных друг к другу, чем длинными в более отдаленных друг от друга точках.

Извлекать вибратор следует медленно, так как иначе образуются впадины, которые заполняются цементным молоком.

Не следует вибрировать смесь, расположенную ближе 10 см от поверхности опалубки.

Во время работы виброуплотнитель бетона не должен опираться на арматуру монолитных конструкций. Если виброуплотнитель бетона передаёт вибрации на каркас, то вокруг стержней арматуры создается пленка цементного молока, а это ухудшает сцепление бетона с арматурой.

Вибрирование пластичных смесей с осадкой конуса более 9 см считается неэффективным, поскольку в данном случае силы трения из-за большой подвижности смеси невелики, и энергия колебаний растрачивается на расталкивание крупных составляющих, которые в результате оседают, расслаивая смесь.

Продолжительность вибрирования

Продолжительность вибрирования на каждой позиции должна обеспечивать достаточное уплотнение бетонной смеси.

Продолжительность вибрирования зависит от многих факторов, в частности от частоты колебаний. Она сокращается с повышением частоты, подвижности смеси, увеличением количества мелких фракций в смеси, уменьшением массы бетона, а также с повышением густоты армирования. Для ручных вибраторов время виброуплотнения в среднем составляет 15-30 с. 

Не следует вибрировать смесь слишком долго. Излишняя вибрация может вызвать расслоение смеси в связи с различной плотностью цементного теста, и заполнителя. При этом наиболее тяжелые крупные зерна опускаются на дно формы. Расслоение усиливается при недостаточной однородности смеси, а также при перерасходе воды. Введение добавок, особенно воздухововлекающих, позволяет уменьшить это явление. В зависимости от продолжительности вибрирования часть вовлеченного воздуха выделяется из смеси. Эти потери тем больше, чем выше энергия уплотнения, чем пластичнее смесь и чем дольше проходит вибрирование.

Основные признаки качественного уплотнения бетона:

  • прекращение оседания бетонной смеси;
  • появление цементного молока на поверхности;
  • прекращение выделения воздушных пузырьков.

В зависимости от подвижности бетонной смеси продолжительность вибрирования на одной позиции может составлять от 20 до 100 секунд. Дальнейшее вибрирование может привести к расслоению смеси вследствие опускания крупных частиц.

Контролируя качество производства бетонных работ, назначают предельные значения промежутков времени между укладкой двух слоев. При этом необходимо учесть температуру наружного воздуха, погодные условия и свойства применяемого цемента. Как правило, продолжительность этих промежутков не более 2 ч. Укладка последующего слоя с перерывом, превышающим установленный лабораторией, может привести к серьезному дефекту забетонированной конструкции вследствие нарушения вибраторами монолитности бетона предыдущего слоя. В таких случаях строительная лаборатория должна давать указание о прекращении бетонирования. Возобновление бетонирования после перерыва допускается только при достижении бетоном прочности на сжатие не менее 1,5 МПа.

В месте контакта ранее уложенного бетона со свежеуложенным образуется так называемый рабочий шов. Производитель работ или мастер обязаны проконтролировать правильность его назначения и выполнения. Рабочие швы назначаются в соответствии со СНиП 3.03.01-87 и требованиями проекта. Положение рабочих швов, а следовательно, и место перерыва укладки бетонной смеси должны соответствовать требованиям технических условий, разработанных для каждого отдельного случая применительно к типу бетонируемых конструкций. В процессе возведения здания или сооружения в качестве рабочих швов следует использовать осадочные и температурные швы.

Для обеспечения прочного сцепления нового слоя со схватившимся или уже затвердевшим необходимо поверхность старого бетона очистить от грязи и мусора, удалить с него цементную пленку проволочными щетками, а затем помыть струей воды под напором. Воду, оставшуюся в углублениях, удаляют. Непосредственно перед укладкой нового слоя бетонной смеси необходимо на поверхность старого уложить слой цементного раствора толщиной 20-30 мм того же состава. От тщательности выполнения вышеперечисленных работ зависит качество бетонируемой конструкции.

Повторное виброуплотнение бетонной смеси

Для повышения качества бетона при определенных условиях применяют так называемое повторное вибрирование. Этот метод предусматривает вторичное вибрирование бетона через 1,5-3 часа после первого. По исследованиям ряда авторов повторное вибрирование повышает его прочность при сжатии и растяжении в раннем возрасте. По этим исследованиям повторное вибрирование приводит к увеличению плотности смеси за счет уменьшения пор. Оно позволяет снова закрыть волосяные трещины, которые образуются в результате усадки до схватывания.

Однако повторное вибрирование вызывает изменения в кристаллическом теле, которые могут привести к неблагоприятным последствиям для определенных видов цемента и составов бетонной смеси. Считается, что повторное вибрирование нежелательно для смесей с высокой степенью жесткости. И наоборот, оно весьма эффективно для смесей пластичной консистенции. Весьма полезно введение в смесь добавок, выполняющих одновременно воздухововлекающие и пластифицирующие функции. Вибрирование можно повторять как один, так и два, три раза, но в течение непродолжительного времени, составляющего 1/2 и 1/3 времени первого вибрирования. Операция эта требует большой осторожности, необходимы предварительные испытания на строительной площадке.

Опубликовано Оставить комментарий

Опалубка. Назначение и виды опалубки.

строительная опалубка

Основным строительным оборудованием для монолитного строительства является опалубочная система.

Опалубочная система - включает в себя элементы опалубки, обеспечивающие жесткость и устойчивость, крепежные элементы, поддерживающие конструкции и леса.

Опалубка - это совокупность элементов для придания монолитной конструкции необходимой формы до тех пор, пока бетон не наберет заданную прочность.


По материалам изготовления опалубку можно поделить на:

  • стальная;
  • алюминиевая;
  • деревянная;
  • пластиковая;
  • картонная;
  • армоцементная;
  • комбинированная.

По способу применения опалубка делится на съёмную и несъёмную.

Несъёмная опалубка - это блоки или панели из различных материалов, которые монтируются в единую опалубочную конструкцию — форму для укладки монолитного армированного бетона. Данный вид опалубки ускоряет и упрощает строительство за счёт объединения нескольких операций в одном технологическом цикле. Например несущая стена с нужным сопротивлением теплопередаче возводится за один технологический цикл. Несъёмная опалубка, после укладки бетона, становится функциональной частью монолитной готовой конструкции. Позволяет упростить и удешевить некоторые этапы монолитного строительства, а также совместить несколько технологических операций в одну.

Съемная опалубка – это опалубка съемного типа, которая применяется для возведения различных монолитных конструкций. Подходит в тех случаях, когда требуется возведение одинаковых конструкционных элементов.

По видам бетонируемых конструкций опалубка делится на:

  1. вертикальная;
  2. горизонтальная.

Вертикальная опалубка - применяется для получения вертикальных монолитных конструкций из бетона или железобетона. Делится на подвиды в зависимости от вида бетонируемой конструкции:

  • колонн;
  • стен;
  • фундамента;
  • труб.

Горизонтальная опалубка - применяется для получения горизонтальных монолитных конструкций из бетона или железобетона. Делится на подвиды в зависимости от вида бетонируемой конструкции:

  • перекрытий;
  • купола;
  • мостовых пролетов.

Опалубка перекрытий

Опалубка перекрытий состоит из следующих основных элементов: треноги, стойки, головки, балки и фанеры.

При установке опалубки балочного перекрытия последовательность работ будет следующей. Сначала устанав­ливают арматурный каркас колонн, далее монтируют опалубку колонн. Для сопряжения с расположенными выше конструкциями арматуру колонн пускают выше верхнего среза опалубки на 40-50 см. Далее бетонируют колонны. После этого на специальные вырезы в опа­лубке колонн укладывают щиты днища балок или прогонов, под них устанавливают и выверяют по высоте поддерживающие телескопические стойки на треногах. На следующем этапе устанавлива­ют стойки под второстепенные деревянные балки, по ним рас­стилают палубу из влагостойкой фанеры. После укладки арматурных каркасов и сеток осуществляют бетонирование. Разборку опалубки рекомендуется выполнять после набора бе­тоном распалубочной прочности. Монолитное перекрытие устраивают после возведения стен и набора ими необходимой начальной прочности. Опалубку перекрытий монтируют по телескопическим стойкам, уклады­вают арматурные сетки в двух уровнях, осуществляют бетони­рование.

По конструкции опалубка делится на:

  • рамная;
  • мелкощитовая;
  • крупнощитовая;
  • блочная;
  • объёмно-переставная;
  • скользящая;
  • горизонтально-перемещаемая;
  • подъёмно-переставная;
  • пневматическая;
  • греющая.

Рамная опалубка

Рамная система включает в себя каркасные щиты, подпорные элементы, болтовые соединения и детали крепежа.

Щит - это формообразующий элемент опалубки, состоящий из палубы и каркаса. Каркасные щиты состоят из несущей металлической рамы, рёбер жёсткости и опалубочной плиты - палубы. Палуба это элемент щита, образующий его формующую рабочую поверхность. Рама из замкнутого полого профиля с фасонным гофром предохраняет торцы плиты от повреждений и позволяет соединить элементы в любом месте. Металлический каркас служит для обеспечения необходимой жёсткости конструкции и значительно облегчает и ускоряет монтаж модульных элементов. Формообразующий плоский элемент опалубки, состоящий из нескольких смежных щитов, соединенных между собой с помощью соединительных узлов и элементов называют опалубочной панелью. Опалубочная панель предназначена для опалубливания всей конкретной плоскости.

Рамную систему в свою очередь возможно поделить по конструктивным признакам на мелкощитовую и крупнощитовую.

Мелкощитовая опалубка

Мелкощитовая опалубка – это система щитов и комплектующих небольших размеров и веса для бетонирования различных архитектурных форм. Она состоит из нескольких типов небольших по размеру щитов, а также элементов креплений и поддерживающих устройств. Щиты имеют площадь не более 3 м2, масса одного элемента та­кой опалубки не должна превышать 50 кг. Мелкощитовая опалубка может применяться совместно с крупнощитовой опалубкой для создания небольших по объему сложной конфигурации конструкций.

Крупнощитовая опалубка

Крупнощитовая опалубка – применяется для конструкций с боль­шими опалубливаемыми поверхностями. Крупнощитовая опалубка включает щиты площадью от 3 до 20 м2 повышенной несущей способности. Элементы опалубки совмещают в себе палубу с поддерживающими прогонами и ребрами. Она предназначена для возведения крупноразмерных монолитных конструкций самых разнообразных сооружений. Установка и снятие осуществляется только грузоподъёмным оборудованием. Щиты являются самонесущими и включают палубу, элементы жесткости щита и несущие конструкции. Такие щи­ты оборудуют подмостями, подкосами. Две противостоящие опалубочные панели соединяются между собой системой гори­зонтальных винтовых стяжек, пропускаемых через тело будущей бетонной конструкции и устанавливаемых до бетонирования. Для обеспечения устойчивости опалубки и выверки ее в проек­тное положение используют различные системы подкосов и раскосов.

Опалубку стен устанавливают в два этапа. Сначала монтиру­ют арматурный каркас, затем — опалубку с одной стороны сте­ны на всю высоту этажа и опалуб­ку со второй стороны. Бетонную смесь в опалубку укладывают сверху с закреплен­ных на ней консольных подмостей. Смесь в опалубку укладывается слоями толщиной 30-40 см с последующим уплотнением глубинными вибраторами.

Блочная опалубка

Блочная опалубка – это пространственная конструкция, собираемая из стальных щитов на разъемных или шарнирных креплениях (опалубочные блоки) или на сварке (блок-формы). Служит для возведения отдельно стоящих замкнутых монолитных конструкций. Применение блочной опалубки в большинстве случаев оказывается экономичнее разборно-переставной опалубки благодаря значительному снижению затрат труда. Наиболее целесообразно использовать блочную опалубку для бетонирования лифтовых шахт и стен лестничных клеток. Конструктивно решена в двух вариантах. В первом варианте смежные щиты соединены в уз­лах тягами с винтовой муфтой. Второй вариант отличается тем, что опалубку изготавливают с четырьмя гибкими щитами.

Объемно-переставная опалубка

Объемно-переставная опалубка – применяется для одновре­менного бетонирования внутренних поперечных стен и между­этажных перекрытий многоэтажных зданий. Эту опалубку выполняют в виде пространственных секций П- и Г-образной формы. Применяется преимущественно при строительстве зда­ний с поперечными несущими стенами и открытыми фасада­ми.

Скользящая опалубка

Скользящая опалубка - предназначена для бетонирования высоких вертикальных стен зданий и сооружений, имеющих постоянное сечение. Применение опалубки особенно эффективно при строительстве высотных зданий с минимальным количеством оконных и дверных прое­мов, закладных деталей и элементов. К ним отно­сятся хранилища различных материалов, дымовые трубы высотой до 400 м, градирни, ядра жесткости высотных зданий, резервуары для воды, радио- и телевизионные башни. Важным достоинством возведения объектов применяя данную технологию является значительное повышение темпов стро­ительства.

Применение скользящей опалубки требует строгого выполнения технологических требований:

  • высокое качество бетонной смеси (подвижность, вязкость, удобоукладываемость);
  • непрерывность бетонирования;
  • строгая вертикальность движения опалубки;
  • доставка бетонной смеси по графику бе­тонирования;
  • непрерывность работ по установке арматуры.

Горизонтально-перемещаемая опалубка

Горизонтально-перемещаемая опалубка - передвигается в горизонтальном направлении по мере приобретения бетоном достаточной прочности. Катучая опалубка - применяется для бетонирования подземных сооружений и коммуникаций. Катучая опалубка для бетонирования линейно-протяженно­го сооружения (коллектора) состоит из внутренней и наруж­ной частей. Нижняя внутренняя часть опалубки, смонтированная на рельсовом пути, состоит из тележки с за­крепленными на ней домкратами.

Туннельная опалубка - применяется для отделки туннелей и коллекторов, бетонирования конструкций жилых и общественных зданий, возводимых закрытым способом. Конструктивно мало отличается от го­ризонтально-перемещаемой.

Подъемно-переставная опалубка

Подъемно-переставная опалубка – применяется для возведения специальных соору­жений постоянного и переменного сечений по высоте, чаще всего имеющих конусообразную направленность вверх — труб, градирен, силосных сооружений и т. д. Состоит из наружных и внутренних щитов, отделяемых от бетона при установке на новый ярус, элементов креплений и поддержива­ющих устройств, рабочего настила и подъемных приспособле­ний.

Пневматическая опалубка

Пневматическая опалубка - применяется для возведения сооружений и отдельных элементов криво­линейной поверхности. Ее успешно применяют для возведения коллекторов, покрытий купольных сооружений диаметром до 36 м и сводчатых тонкостенных конструкций при пролете 12-18 м. Этот вид опалубки выполняют в виде гибкой оболочки из высокопрочной прорезиненной ткани толщиной 0,3-0,5 мм или прочной полимерной пленки. Опалубку раскраивают по спе­циальным выкройкам, сшивают, швы проклеивают тем же ма­териалом. Опалубку закрепляют по контуру основания, затем в нее нагнетают воздух под давлением. Перед бетонированием ее поверхность покрывают эмульси­онной смазкой. Армирование выполняют из дисперсного ар­мированного стекловолокна или из обычной сетки. Бетон на­носят набрызгом или послойно. Для уско­ренного твердения бетона возможна подача в опалубку пара или подогретого воздуха. Для предотвращения высушивания твердеющего бетона от воздействия ветра и солнечной радиации его поверхность сра­зу после укладки слоя проектной толщины покрывают мето­дом напыления защитной пленкой, препятствующей активно­му испарению влаги.

Греющая опалубка

Греющая опалубка - это опалубка щиты, которой снабжены нагревательными элемен­тами, вмонтированными с тыльной стороны палубы и закрыты­м слоем утеплителя. Нагревательными элементами могут быть снабжены щиты любой опалубки (мелкощитовой, крупнощито­вой, объемно-переставной, катучей, скользящей и т. д.). При­меняют греющие опалубки при бетонировании в зимних усло­виях, а также для ускорения твердения бетона в летних условиях с целью ускорения работ и сокращения производст­венного цикла.

Материалы для изготовления опалубки

Поддерживающие элементы опалубки обычно выполняют из стали и алюминиевых сплавов, что позволяет достичь их высокой оборачиваемости.

Комбинированные конструкции позволяют в наибольшей степени использовать специфические характеристики применяемых материалов. При использовании фанеры и пластика оборачиваемость опалубки достигает более 50 раз, при этом существенно возрастает качество покрытия за счет низкой адгезии материала с бето­ном. В стальной опалубке используют листы толщиной от 2 до 6 мм, что делает такую опалубку достаточно тяжелой. Опа­лубка из деревянных материалов требует дополнительной защиты синтетическими покрытиями. Пленки на палубу наносят методом горячего прессования с использованием для пропитки древесины баке­литовых жидких смол, эпоксидно-феноловых лаков, используют стеклоткань, пропитанную фенолформальдегидом. В нас­тоящее время наиболее широкое распространение получила влагостойкая фанера, выпускаемая толщиной 18-22 мм. Для покровного слоя используют стеклопластики, слоистые плас­тики, винипласты.

Все большее применение завоёвывают пластмассовые опалубки, особенно армированные стекловолокном. Они обладают высокой прочно­стью при статической нагрузке, химически совместимы с бето­ном. Опалубки из полимерных материалов отличаются небольшой массой, стабильностью формы и устойчивостью против коррозии. Возможные повреждения легко устраняются нанесением нового покрытия. Недостаток пластмассовых опа­лубок — их несущая способность резко снижается с повышением температуры.

Появились комбинированные опалубки, когда на металли­ческую палубу наносится листовой полипропилен. Использо­вание композитов с токопроводящим наполнителем позволяет получать греющие покрытия с регулируемыми режимами теп­лового воздействия на бетон.




Опубликовано Оставить комментарий

Что такое монолитное строительство?

Монолитное строительство

Монолитное строительство - метод возведения зданий и сооружений при котором основным материалом конструкций является монолитный железобетон. Основная особенность монолитного строительства заключается в том, что местом для производства материала монолитных зданий является строительная площадка. Применение монолитного железобетона позволяет реализовывать многообразие сложных архитектурных форм. Монолитное строительство позволяет сократить расход стали на 7-20% и бетона до 12%. Но при этом возрастают энергозатраты, особенно в зимнее время, и повышаются трудозатраты на строительной площадке.

Комплексный процесс возведения монолитных конструк­ций включает в себя два основных процесса. Заготовительный процесс связан с изготовлением опалубки, ар­матурных каркасов, арматурно-опалубочных блоков, приготов­ление товарной бетонной смеси. Заготовительный процесс, в основном, заводского производства. Построечный процесс связан это уже непосредственно монтаж опалубки и арматуры, транспортировка и укладка бетонной смеси, выдерживание бетона и демонтаж опалубки. Рассмотрим этапы построечного процесса более подробно.

Процесс монолитного строительства состоит из связанных технологически последовательных процессов:

  • Монтаж арматуры;
  • Монтаж опалубки и лесов;
  • Укладка и уплотнение бетонной смеси;
  • Уход за бетоном;
  • Демонтаж опалубки.

Последовательность некоторых процессов может меняться в зависимости от вида конструкции. Давайте рассмотрим каждый из этапов монолитного строительства немного подробней.

Устройство арматурного каркаса.

Зачем же арматура и создание арматурного каркаса для монолитной конструкции. Как известно, бетон воспринимает растягивающие нагрузки в 15-20 раз хуже, чем нагрузки на сжатие. С целью компенсировать слабую работу бетона на растяжение в его структуру включаются стальные стержни - арматура.

Из арматурных стержней, различных диаметров, при помощи сварки или специальной отожженной стальной проволоки "вяжутся" арматурные каркасы будущей конструкции.

Монтаж опалубки

Опалубка - это оборудование для монолитного строительства, которое служит для придания и поддержания формы конструкциям из бетона, до набора им необходимых прочностных характеристик.

Опалубка для стен и колонн производится из стальных или алюминиевых профилей обшитых ламинированной фанерой. Опалубка перекрытий представлена, как правило, вертикальными телескопическими стойками, на которые укладываются специальные деревянные балки, а на балки, в свою очередь, укладывается ламинированная фанера.

Поверхность опалубки, находящаяся в непосредственном контакте с бетоном, перед бетонированием обрабатывается техническим маслом (эмульсолом), в основе которого содержатся минеральные масла и поверхностно-активные вещества. Применение смазки для опалубки необходимо для того, чтобы повысить качество поверхности конструкций, увеличить количество циклов оборачиваемости опалубки и облегчить её распалубку.

Монтаж опалубки производится как вручную, так и механизированным способом.

Укладка бетонной смеси

Укладка бетонной смеси производится в предварительно установленную опалубку. Для того, чтобы исключить возможность возникновения пустот внутри будущей конструкции в процессе укладки бетонная смесь уплотняется глубинными вибраторами. Булава вибратора погружается в бетонную смесь до тех пор, пока не прекратится выделение пузырей на поверхности смеси.

Уход за бетоном

Качество полученных железобетонных конструкций сильно зависит от погодных условий. Уход за бетоном включает в себя комплекс мер по предотвращению преждевременного высыхания бетонной смеси в летнее время и промерзания свежеуложенной бетонной смеси в зимнее время года.

Достоинства и недостатки монолитного строительства

Главное преимущество монолитных зданий над всеми остальными - это отсутствие швов между различными конструкциями здания. Монолитное здание представляет из себя цельную железобетонную конструкцию, что обеспечивает высокую жесткость каркаса и возможность создавать высотные здания. Кроме того монолитная конструкция обладает высокой сейсмостойкостью, т.к. высокая жесткость каркаса сводит к минимуму склонность к трещинообразованию. В монолитных зданиях существует возможность перепланировки помещений в период эксплуатации без риска повреждения несущих конструкций, а также высокое качество поверхностей стен и потолков, снижающее объемы отделочных работ. Масса монолитных зданий меньшая по отношению к кирпичным зданиям на 15 – 20%.

Монолитное строительство имеет ряд недостатков. Самый основной недостаток это потребность в большом количестве квалифицированного персонала, требуется дорогое строительное оборудование. Железобетон имеет высокую теплопроводность, поэтому здания требуют дополнительного утепления. Также стенам из бетона характерно отсутствие паропроницаемости, это обязательно нужно компенсировать принудительной вентиляцией будущих помещений.

Опубликовано Оставить комментарий

Стойки для опалубки перекрытий.

Телескопические стойки для опалубки перекрытий

Стойки для опалубки перекрытий представляют собой строительные телескопические стойки из стальных труб. Они применяются как вертикальные стойки для временных опорных конструкций. Чаще всего телескопические стойки применяются при монолитном строительстве как опорный элемент опалубки перекрытия.

Стойка для опалубки перекрытий состоит из следующих частей:

Стойки для опалубки перекрытий

A - Головная плита;

B - Выдвижная труба;

С - Фиксирующая скоба;

D  - Регулировочная гайка;

E  - Поворотный палец;

F - Открытая резьба;

G  - Опорная труба;

- Опорная плита.

Монтаж стойки для опалубки перекрытий

Стойки для опалубки перекрытий.

Монтаж стойки начинается с установки треноги. Потом с помощью фиксирующей скобы предварительно установить высоту стойки для перекрытий. Вставить стойку для перекрытий в треногу и зафиксировать с помощью зажимного рычага. Перед тем, как подняться на опалубку, следует еще раз убедиться в правильности фиксации. Точную юстировку возможно выполнить с помощью регулировочной гайки уже установленной стойки. Если промежуточные стойки опалубки перекрытий монтируются без треноги то из необходимо зафиксировать с помощью удерживающей головки во избежание падения. При использовании в качестве вспомогательных опор стойки должны жестко упираться в потолочные конструкции, что бы их выпадение не было возможным.

Демонтаж стойки для опалубки перекрытий

Стойки для опалубки перекрытий.

Чтобы демонтировать стойки для опалубки необходимо ослабить (1) регулировочную гайку молотком. Взяться рукой за (2) выдвижную трубу и другой рукой извлечь (3) изогнутые фиксирующие скобы из отверстий. Наклоните стойку и задвигая верхнюю трубу направляйте её рукой.

Требования по безопасной эксплуатации стоек для опалубки

  • Телескопические стойки для перекрытий должны использоваться только в строго вертикальном положении;
  • Вся площадь нижней и верхней опорной плиты стойки должна плотно прилегать к основанию;
  • Устанавливать стойки только на надежном, твердом и ровном основании;
  • Запрещается соединять несколько стоек одну над другой;
  • Запрещается использовать анкерные стержни или стальную арматуру как замену фиксирующей скобы;
  • Запрещается применять стойки для подпирания опалубочных элементов;
  • Не использовать как распорки для укрепления траншей.

Техническое состояние рабочей стойки для опалубки перекрытий

Стойки для опалубки перекрытий.
  • Не допускается изгиб верхних и нижних пластин;
  • Резьба должна быть смазана и иметь свободный ход по всей длине;
  • В положении, когда перекрыты отверстия для вставки фиксирующей скобы, выдвижная труба должна иметь возможность выдвигаться на всю рабочую длину;
  • Увеличение отверстий во вставной трубе допускается не более чем на 2 мм;
  • Не допускаются трещины в сварных швах;
  • Изгиб трубы допускается до (b) 3 мм внутрь трубы и (а) до 1 мм наружу трубы.

Транспортировка и хранение стоек для опалубки

После эксплуатации стойки для опалубки должны быть очищены от строительных растворов и смесей. Резьба смазана и укомплектована гайкой и скобой. Для более легкой транспортировки стойки укладываются в штабельный поддон, который можно перемещать различной грузоподъёмной техникой. Хранить комплектующие элементы опалубки перекрытий необходимо в сухих складах.

Опубликовано Оставить комментарий

Фибра полимерная для бетона

Полимерная фибра для бетона
Фибра полимерная для бетона - жёсткое полимерное волокно, применяется для армирования бетона и других цементных строительных растворов. Фибра полимерная для бетона позволяет значительно сократить затраты в сравнении с использованием стального волокна. Удельная масса стального волокна примерно в 9 раз выше полимерного. Полимерное волокно не оказывает негативного влияния на смесители и раздатчики бетона, а также не подвержено коррозии. По сравнению со стальными волокнами, полимерная фибра легче распределяется и смешивается в цементных замесах, не принося ущерба смешивающему и подающему оборудованию. В качестве сырья для производства жёсткого полимерного волокна используется первичные полимеры. Данный вид волокна обладает повышенной прочностью на разрыв. Учитывая указанные особенности, жёсткое полимерное волокно может широко использоваться вместо стальных волокон для армирования цементных растворов, придавая получаемому бетону повышенную устойчивость к образованию трещин.

Технические параметры фибры полимерной для бетона:

  • Основное вещество термопластичный полимер пропилена — полипропилен [-СН2-СН·(СН3)]n
  • Цвет: прозрачно-белый;
  • Плотность 0,91 г/см³;
  • Диаметр отдельного волокна 0,6 ± 0,1 мм;
  • Длина волокна 40 ± 2 мм;
  • Тип волокна: монофиламентный;
  • Форма: волнистая;
  • Удельная разрывная нагрузка не менее 280 н/мм²;
  • Удлинение при разрыве не более 50%;
  • Электропроводность незначительная;
  • Устойчиво к кислотам и щелочам.

Сфера применения фибры полимерной для бетона:

Фибра полимерная для бетона применяется в строительстве для армирования тяжёлых бетонов. Позволяет повысить прочностные характеристики промышленных стяжек, усиление конструкционных характеристик фундаментов, мостовых перекрытий и других конструкций из бетона с повышеными нагрузками.

Инструкция по применению полимерной фибры для бетона:

Дозировка. Объёмная доля армирующего волокна в тяжёлых бетонах должна составлять не менее 0,3 %, что соответствует 2,7 кг жёсткого полимерного волокна. В зависимости от типа бетона и условий эксплуатации рекомендуемое количество жёсткой полипропиленовой фибры изменяется в следующих пределах: промышленные полы, стяжки: 2,7-4,7 кг/м³ (соответствует 25-40 кг стальной фибры) конструкционные элементы жилых зданий: 2,9-5,8 кг/м³ (соответствует 25-50 кг стальной фибры) конструкционные элементы тоннелей, дорог, шахт: 5,8-11,6 кг/м³ (соответствует 50-100 кг стальной фибры) гидротехнические сооружения (плотины, мосты), банковские хранилища: 11,6-14,0 кг/м³ (соответствует 100-120 кг стальной фибры). Длина волокна: для придания тяжёлому бетону необходимой устойчивости к трещинообразованию используют волокно длиной не менее 40 мм. Смешивание. Волокно добавляется в смеситель на первичной стадии, вместе с камнем и песком, после перемешивания в течение 2 минут волокно равномерно распределяется, после чего можно добавлять цемент и воду. Также можно использовать различные добавки и пластификаторы, однако в данном случае это не является обязательной рекомендацией, как при использовании стальной фибры. Специальных условий при производстве бетона с использованием жёсткого полимерного волокна не требуется, технология приготовления бетона не модифицируется. По результатам лабораторных исследований, полимерная фибра, при добавлении в раствор бетона, придает ему лучшие прочностные характеристики на растяжение при изгибе, и такие же характеристики прочности при сжатии бетона, при соотношении использования 4кг полимерной фибры против 35кг металлической фибры типа «XOREX».
Опубликовано Оставить комментарий

Фибра полипропиленовая. Свойства, характеристики и способы применения.

Полипропиленовая фибра
Полипропиленовая фибра Фибра полипропиленовая предназначена для дисперсного армирования бетонов и строительных растворов на цементной или гипсовой основе, пенобетона, штукатурок. Фибра полипропиленовая используется при работах по устройству стяжки пола как дешевая, но более качественная замена стальной армирующей сетки или в качестве дополнительного армирующего элемента. Также данная фибра применяется в штукатурных работах как замена стеклосетки, в производстве блоков из пенобетона, полистиролбетона, газобетона где невозможно применять какой-либо другой способ армирования. Может применяться в производстве тротуарной и облицовочной плитки. Применение фибры полипропиленовой для бетона позволяет понизить количество трещин в случае использования некачественного цемента или цемента низких марок. Общее описание фибры полипропиленовой: Особенности: повышает сопротивление механическим воздействиям; в отличии от металлической сетки армирует раствор по всем направлениям; обладает высокой адгезией к раствору и образует однородную массу. Полипропиленовая фибра для бетона Фибра полипропиленовая разработана как альтернатива обычной металлической фибры. Основное её назначение – повышение сопротивления усадочному трещинообразованию материалов на цементной основе. Фибра добавляется в процессе приготовления растворной или бетонной смеси. Она легко и равномерно распределяется по всему объему, создавая пространственное армирование, препятствующее образованию и развитию усадочных трещин. Также повышается прочность конечных изделий на изгиб, ударная прочность, а также исключается появление пластических деформаций повышается устойчивость к истиранию. Предотвращается отслаивание поверхности и увеличивается морозостойкость.

Основные показатели полученные в результате испытаний фибры:

• существенно снижает образование усадочных микротрещин (до 90%) • уменьшает образование внутренних напряжений при пластической усадке (до 50%) • повышает износостойкость бетонной поверхности (до 70%) • повышает прочность бетона на изгиб, при сжатии и раскалывании (до 35%) • повышает ударную и усталостную прочность бетона (до 80%) • сокращает время первичного и окончательного твердения, ускорение оборота форм (до 50%) • снижает риск откалывания углов и граней (до 90%) • препятствует расслаиванию бетонной смеси (до 25%) • снижает риск повреждения, разрушения бетонного изделия при извлечении из формы • увеличивает морозостойкость (до 35%) • увеличивает водонепроницаемость (до 50%)

Область применения полипропиленовой фибры:

  • в производстве пенобетона и других ячеистых бетонов (незаменима при заливке пенобетона в опалубку, полов, крыш, дымоходов и т.п.)
  • производстве бетонных сооружений, декоративного бетона
  • строительстве мостов, дорог
  • производстве строительных смесей, штукатурок, растворов

Сфера применения полипропиленовой фибры:

Полипропиленовую фибру следует использовать во всех типах бетонных покрытий (как наружных, так и внутренних), где необходимо предотвратить появление пластических усадочных трещин.

Обычно волокна находят применение в бетоне для:

• промышленные наливные полы, • гидротехнические сооружения (водохранилища, отстойники для сточных вод, водосливы, порты, доки, морские заграждения), • строительные конструкции гаражей, складов, ангаров, • бетонные дороги, • наружные площадки, • бетонные плиты перекрытий, • мосты, • монолитные конструкции, • бетонные плиты фундаментов, • железобетонные сваи, • торкретбетон, • строительные растворы (монтажно-кладочные, штукатурные, затирочные), • сухие строительные смеси (ССС), • ячеистые бетоны (газо-, пенобетоны, арболит), фибропенобетоны, • прессованные и отливаемые изделия (дают возможность изготавливать бетонные детали практически любой формы, в том числе изогнутой, объемной и нестандартных архитектурных решений), • печатный декоративный бетон, • материалы для ремонта бетона, • объекты нефтехимической промышленности, • места повышенной сейсмической активности. Полипропиленовые волокна обеспечивают большую защиту от разрушения краев соединений в бетонных плитах покрытий и сборных железобетонных конструкциях.

Технические характеристики полипропиленовой фибры для бетона:

Материал

100 % полипропилен, плотность 0,91гр/куб.см.

 Длина волокон4мм, 12мм
Диаметр20мкм
Прочность на растяжение

170-260 МПа

Удлинение до разрыва150-250%
DTex (масса нити длиной 10000метров)28 гр
Химическая стойкость

исключительная

Стойкость к солям, кислотам, щелочам

исключительная

Стойкость к растворителям

высокая

Электропроводимость

низкая

Термическая стойкость

низкая

Температура воспламенения

3200С

Температура плавления

1600С

 
Пенобетон, ячеистые бетоны

600 гр/м3

Мосты, автомагистрали, тяжелые конструкции, находящиеся под нагрузкой

1.8 – 2.7 кг/м3

Средненагруженные конструкции, индустриальные полы и т.д.

1 кг/м3

Слабонагруженные конструкции, цементно-песчаные стяжки, тротуары и т.д.

0.6 кг/м3

Дозировка и длина фибры:

Для бетонов: расход 0,9 кг/м³, длина волокон 12 мм Для растворов (кладочных, штукатурных и др.): расход 0.6 кг/м³, длина волокна 4 мм Сухие смеси: пакет 0,9 кг/м³, длина волокна 4 мм

Способ применения полипропиленовой фибры для бетона:

Рекомендуется применять полипропиленовые волокна на начальном этапе перемешивания бетонной смеси. Вариант 1 Фибра полипропиленовая засыпается в любой бетоно- или растворо- смеситель (миксер) в сухую смесь перед добавлением воды (для более качественного распределения волокон — засыпать фибру частями во время перемешивания в щебень). Дозировка: 0.9 кг (1- пакет) на 1м3 бетона. Происходит перемешивание в течение 90-110 оборотов в смесительной установке. Время перемешивания 4-5 минут для миксеров объемом 6-8 м3. Вариант 2 Полипропиленовую фибру предварительно затворяют в воде и после полного распределения волокон, смесь добавляют в цементный раствор. В случае, если необходимо увеличить пластичность бетона или раствора, делать это не добавлением воды, а добавкой пластификатором. ВАП (Фибра) полностью совместима с добавками в бетон и растворы. Бетон и растворы, армированные фиброй, можно подавать насосом и торкретировать. В случае если волоски фибры выступают на поверхности, их можно либо подпалить огнем, либо оставить как «анкеровку» для лучшего сцепления с «финишным» отделочным слоем. Бетон и растворы, армированные фиброй, можно подавать насосом и торкретировать.
Опубликовано Оставить комментарий

Расчет армирования бетонного пола

Расчет армирования бетонного пола

Подбор арматуры для бетонных полов

Вид армированияДостоинстваНедостаткиПримечание
Арматурные стержни (Ø 8-16мм)- рассчитывается  для любых несущих нагрузок
- визуальный контроль*.
- увеличение трудоемкостиНезаменимы при расчете несущей  нагрузки (средней и тяжелой)  бетонной плиты пола
Сварная арматурная  (дорожная) сетка (Ø 4-6мм)- снижение трудоемкости
- визуальный контроль*
- используется только при легкой нагрузкеЭкономичнее при устройстве бетонной стяжки 70-100мм
Фибробетон (СФР-сталефибробетон)- высокая трещиностойкость
- ударопрочность
- снижение трудоемкости
- стойкость к вибрации
- сложность изготовления фибробетона на бетонных заводах,
- фибра не способна конкурировать с арматурой по своим несущим способностям.
Применение фибры выгоднее при больших площадях (более 3 000 м2) и толщине бетонной стяжки 50-70мм.

* визуальный контроль – позволяет перед  заливкой бетона убедится в правильности армирования (диаметр арматуры, размер ячейки, вязка арматуры, защитный слой бетона), с обязательным составлением акта освидетельствования скрытых работ (СНиП 12-01-2004 Приложение Б)

Расчет армирования

Армирование сварной арматурной сеткой (диаметр 4-6мм)

Материал используемый
при армировании на 1 кв. метр

Ячейка, мм

100х100

150х150

200х200

Z*

1,1

1,15

1,2

Сетка Вр-1 ( 4-6мм) на 1м2

1,1м2

1,15м2

1,2м2

Фиксатор арматуры типа "стульчики", шт.**

5

Проволока для вязки 0,8мм, кг***

0,035

0,03

0,018

* Z - коэффицент, используемый при нахлесте карт:

а) - стык внахлестку с расположением рабочих стержней в одной плоскости;

б) - то же, с расположением рабочих стержней в разных плоскостях;

в) - стык впритык с наложением дополнительной стыковой сетки

** Обеспечивает толщину защитного слоя в армированных бетонных полах, обычно 5-30мм (сетка не должна лежать на подбетонной поверхности)
*** Проволока ОН, термически обработанная (ГОСТ - 3282-74). Вяжется каждая ячейка сетки в местах нахлеста.

Армирование арматурными стержнями ( 8-16мм)

  • Одинарное армирование

Материал используемый
при армировании на 1 кв. метр

Ячейка, мм

100х100

150х150

200х200

Арматура A III 8мм*

8,13

5,43

4,14

Арматура A III 10мм

12,73

8,47

6,37

Арматура A III 12мм

18,27

12,17

9,13

Арматура A III 14мм

24,93

16,57

12,47

Арматура A III 16мм

32,53

21,63

16,27

 Фиксатор арматуры "стульчики", шт

5

Проволока для вязки 0,8мм, кг**

0,064

0,058

0,032

Стержни-шпильки (компенсаторы), арматура A I 14мм, кг***

0,6

* Армирование производится арматурой периодического профиля (ДСТУ 3760-98), из расчета длины хлыста арматуры 11,7м и с учетом длины перепуска нахлесточного соединения (нахлеста) арматуры 250 мм
**Арматура вяжется не меньше чем через 2 ячейки на третью в шахматном порядке
***Для создания шпилечные швов:
- обязательны, если только это не бетонная стяжка, монтирующаяся на существующее бетонное основание.
- не дает возможности вертикальным смещениям карт при проезде колесного транспорта через шов,
- длина стержней 600мм, шаг армиро­ваний 300 мм.

  • Объемное армирование (двойное)

Армокаркас из арматуры АIII 8мм (из расчета 20шт. на карту 6х6м)………2,1кг/м²

Фибробетон

Рекомендации по концентрации стальной фибры в бетоне:

  • При легкой динамической нагрузке - 20-30 кг/м³
  • При средней динамической нагрузке - 30-40 кг/м³
  • При большой динамической нагрузке - 40-75 кг/м³

Пример расчета объемного армирования

Техническое задание: Устройство монолитной железобетонной плиты пола (двойной арматурный каркас) с проектной толщиной 150 мм из бетона М300 по песчано-щебеночному основанию.

Материал используемый при армировании на 1 кв. метр

Ячейка 150х150мм

Арматура A III 8мм - верхнее армирование, кг

5,43

Арматура A III 10мм- нижнее армирование, кг

8,47

Арматура A III 8мм - армокаркас, кг

2,1

 Фиксатор арматуры "Стульчик 35", шт

5

Проволока для вязки арматуры 0,8мм, кг

0,058

Арматура A I 14мм (компенсаторы), кг

0,6

Итого:

Арматура A III 8мм, кг

7,53

Арматура A III 10мм, кг

8,47

Арматура A I 14мм, кг

0,6

Всего арматуры, кг

16,6

Фиксатор арматуры "Стульчик 35", шт

5

Проволока для вязки арматуры 0,8мм, кг

0,09

Расчет арматуры дан из расчета:

  • строительной длины хлыста арматуры……….11,7 м
  • нахлеста хлыстов арматуры……………………25-30 см

Расход арматуры увеличится при строительной длине хлыста:

  • 9 м …………………………………на 10-15%
  • 6 м …………………………………на 15-20%

Опубликовано Оставить комментарий

Фибра для бетона.

Виды фибры для армирования бетона и других строительных смесей
Виды фибры для армирования бетона и других строительных смесей Перед тем как разобраться какая фибра для бетона Вам подойдет, узнаем что такое фибра в общем смысле. Фибра (от лат. fibra — волокно) - материал животного, растительного, минерального или искусственного происхождения, состоящий из множества волокон, которые соединены вместе. На сегодняшний день фибра широко применяется во многих сферах промышленности и производства, имеет разное назначение и применение. В строительной сфере фибра применяется как армирующая добавка для бетонов и других строительных смесей, которая придаёт им более высокие прочностные характеристики. В настоящее время все большую популярность приобретает бетон с добавлением различной фибры, которая значительно повышает прочность бетона, особенно верхнего слоя, на сжатие и растяжение. Добавление фибры также уменьшает вероятность образования трещин на бетонном полу, его прочность на растяжение составляет около 10-15% от прочности на сжатие. Для повышения прочности бетона на растяжение и изгиб бетоны армируют. Армирование может производиться традиционным способом с применением арматурной сетки либо стержней, так и путем добавления в состав бетона фибры.

Преимущества фибры перед традиционным армированием.

Применение фибры сокращает время, затрачиваемое на установку арматуры, так как фибра может быть добавлена на бетонном заводе или непосредственно в миксер (время перемешивания 5 - 15 минут). Также применение фибры увеличивает вибрационную стойкость бетона, благодаря отсутствию арматурной сетке по которой и распространяется вибрация. Фибра не препятствует образованию трещин, но хорошо удерживает трещины от расширения и их увеличения. При замене арматурной сетки на стальную фибру, возможно, существенно уменьшить толщину стяжки, при сохранении несущей способности бетонной плиты. Повышается коррозионная стойкость. При коррозии арматуры в бетоне происходит значительное увеличение ее объема, что приводит к разрушению защитного слоя. Фибра, используемая в строительстве также бывает различного происхождения. Наиболее известные и востребованные виды фибры:
  • стальная;
  • полипропиленовая;
  • базальтовая;
  • стекловолоконная;
  • целлюлозная;
  • углеродная.

Стальная фибра.

Стальная фибра анкерная Стальная фибра для бетонных полов обычно представляет собой стальную проволоку длиной от 30 до 80 мм, диаметром 0,5 -1,2 мм, прочностью на растяжение около 1000 МРа и более, специально профилированную для улучшения сцепления с бетоном. Другой разновидностью стальной фибры является фибра получаемая фрезерованием. Фибра стальная фрезерованная имеет треугольное сечение, две поверхности которого шероховатые, на концах имеются зацепы длиной до 2 мм. Фибра Металическая фибра фрезерованная имеет скручивание по продольной оси. Благодаря высокой температуре процесса резки, у фибры  характерный синеватый оттенок - окисный слой, препятствующий образованию и развитию коррозии в процессе ее хранения и эксплуатации. Геометрические особенности фрезерованной фибры способствуют равномерному распределению фибры по всему объему бетонной смеси без образования "комков" в процессе хранения и перемешивания. Стальная фибра волновая Третий вид стальной фибры для бетонных полов - фибра из стального листа, зигзагообразной формы обеспечивающей высокую анкерующую способность фибры в бетоне. Эксперименты показали, что коэффициент использования материала волокна при разрушении у такой фибру составляет 100%, для сравнения у фрезерованной 82%, у проволочной 64%. Зигзагообразная фибра выпускается как правило длиной 20, 30 и 40 мм и условным диаметром 0,6 - 0,8 мм. Вне зависимости от формы и способа изготовления, эксплуатационные качества фибры для бетонных полов зависят как от дозировки так и от параметров фибры (прочности на разрыв, длины, диаметра, анкеровки). Эффективность работы фибры повышается с увеличением отношения длины к диаметру. Однако, при этом возникают проблемы при перемешивании бетона, что делает наиболее оптимальным применение стальной фибры имеющей отношение длины к диаметру = 60 - 80. Стальные фибры, получаемые путем резки стальной проволоки при диаметре = 0,3 - 0,5 мм и относительной длине = 60 - 80 имеют свой оптимальный интервал армирования (m = 0.5 - 2% объему). Может быть изготовлена из нержавеющей стали, с покрытием и без покрытия. Номинальный расход 20 - 40 кг/м³ бетона. Стальная фибра для бетона, будучи хорошо перемешена, представляет собой равномерно распределенную арматуру.
Недостатки металлической фибры:
    • относительно высокий вес изделия;
    • низкая коррозионная стойкость;
    • низкое сцепление с бетонной матрицей;
  • стальная фибра для бетона имеет свойство выходить на поверхность бетона в результате эрозии, что может угрожать безопасности конструкции и элементам, взаимодействующим с поверхностью.

Чтобы избежать коррозии металлической фибры её можно обработать специальным составам, оцинковывать или изготовить из легированной стали, что неминуемо ведет к удорожанию материала.

Полипропиленовая фибра для бетона. Полипропиленовая фибра Полипропиленовая фибра – изготавливается из синтетического термопластичного неполярного материала, полимер газа пропилена, полимер это химическое соединение на высокомолекулярном уровне. Полипропиленовая фибра тоже является материалом для дисперсного армирования бетона, имеет аббревиатуру ВСМ – волокно строительное микроармирующее. Преимущества полипропиленовой фибры – низкий удельный вес, большое количество волокна на единицу веса, высокая щелочестойкость и отсутствие коррозии. Недостатки полипропиленовой фибры:
  • низкая прочность волокна на растяжение по сравнению с фиброй из других материалов, а также в зависимости от качества материала сильно изменяются прочностные характеристики;
  • Высокий коэффициент удлинения волокна - до 300%;
  • Низкий модуль упругости – 3500 Мпа;
  • низкая температурная стойкость полипропиленовых волокон – температура плавления – 160С°, температура воспламенения – 320С°;
  • высокий разброс по качеству сырья для производства материала.
Изучая данный вопрос, иногда кажется, что некоторые производители существенно завышают характеристики своего продукта, так к примеру одним производителем заявляется, что его полипропиленовая фибра имеет прочность на растяжение – 968 Мпа, в то время как большинство производителей заявляет: 170 – 250 Мпа, то же самое и с относительным удлинением: 20%, против 150 – 250% от заявленных большинством производителей, в таких случаях будет лучше ознакомиться с технической документацией: ТУ, протоколы испытаний, сертификаты. Полипропиленовая фибра эффективно борется с растрескиванием бетона, а заявления производителей о том, что она повышает ударную прочность бетона, не подтвержденны научными испытаниями. Базальтовая фибра. Базальтовая фибра Базальтовая фибра для бетона – изготавливается из горной породы - базальта. Базальт образуется в результате излияния магмы на поверхность земли и её застывания, этому сопутствует целая череда процессов плавления и застывания мантийных пород из недр Земли, в результате чего и образуется базальт в чистом виде. Базальт отличается высокой стойкостью к агрессивным средам, он не подвержен коррозии, и не теряет своих качеств с течением времени. Фибра из базальтовых волокон унаследовала все эти качества, и не обладает высоким ценником по сравнению с углеродными волокнами и волокнами из щелочестойкого AR стекла. Фибру из базальта, получают путем расплава базальтовой породы под температурой 1800С°. Благодаря природному происхождению материала нет такого разброса по качеству, как среди синтетических волокон. Единственное что нужно уточнять у продавца, это каким замасливателем покрываются волокна, замасливатель необходим для облегчения введения фибры в бетонную матрицу. Также следует уточнять толщину волокон и длину резки, так как размеры волокна существенно влияют на их влияние на бетон. Оптимальными считаются волокна длиной – 12-17 мм и толщиной 13-19 микрон. Стекловолоконная фибра. Стекловолоконная фибра Щелочестойкое стекловолокно (стеклофибра) – искусственное волокно, изготавливаемое из неорганического стекла, посредством его расплава. Условно разделяются на две большие группы: Е-стекло – самые распространенные, общего назначения и ВМП – высокомодульное стекло повышенной прочности. Известно множество марок стекловолокна, которые различаются специфическими характеристиками: E(electrical), S(strength), AR (alkali resistant) и др. Стекловолоконная фибра для бетона имеет высокие прочностные характеристики, по многим схожие с базальтовой, но к выбору следует подойти очень ответственно, так как материал искусственный, стоит ознакомиться у производителя какой марки волокно используется для изготовления фибры, так как существует стекловолокно с низкой щелочестойкостью. Целлюлозная фибра. Целлюлозная фибра Целлюлозная фибра представляет собой волокна из натуральной целлюлозы, которые применяют как армирующую добавку в строительные смеси. Натуральные целлюлозные добавки имеют аморфную структуру волокна с высокой поглощающей и отдающей способностью всех водонасыщенных и органических веществ. Целлюлозная фибра — нерастворима в воде и устойчива ко многим органическим растворителям, инертна по отношению к кислотам и щелочам. Натуральная целлюлозная добавка способствует снижению отдачи влаги растворными смесями, особенно в гидрофильные основы и внешнюю окружающую среду. Целлюлозные волокна влияют на повышение паропроницаемости полимерминеральных покрытий, что очень важно для тонкослойных отделочных систем. Усадочные явления в растворных смесях регулируются снижением степени водоотдачи, что исключает образование усадочных трещин. Способность целлюлозной фибры транспортировать жидкость из нижних слоев в верхние позволяет избежать пересушки верхнего слоя, то есть увеличивается время пребывания во влажном состоянии. Углеродная фибра. Углеродная фибра Углеродная фибра для бетона – резаные углеродные волокна, изготавливаются из углерода, химического элемента, посредством его термической обработки при температуре 3200С°. Обладает очень высокими прочностными характеристиками, имеют низкий коэффициент удлинения, стойки к любой агрессивной среде и химическим элементам. Отличаются более высокой стоимостью.

Сравнительная характеристика различной фибры.

ПоказательБазальтовая фибраПолипропиленовая фибраСтекловолоконная фибра
МатериалБазальтовое волокноПолипропиленСтекловолокно
Прочность на растяжение, МПа3500150 - 6001500 - 3500
Диаметр волокна13 - 17 мкм10 - 25 мкм13 - 15 мкм
Длина волокна, мм3,2 - 15,76 - 184,5 - 18
Модуль упругости, ГПаНе менее 753575
Коэффициент удлинения, %3,220 - 1504,5
Температура плавления, С°1450160860
Стойкость к щелочам и коррозииВысокаяВысокаяТолько у щелочестойкого волокна
Плотность, г/см³2,600,912,60
ПоказательСтальная (металлическая) фибраЦеллюлозная фибра
МатериалПроволока из углеродистой сталиЦеллюлоза
Прочность на растяжение, МПа600 - 150030 - 90
Диаметр волокна0,5 - 1,2 мм16 - 25 мкм
Длина волокна, мм30 - 502 - 25
Модуль упругости, ГПа19035
Коэффициент удлинения, %3 - 4 7 - 9
Температура плавления, С°1550150
Стойкость к щелочам и коррозииНизкаяВысокая
Плотность, г/см³7,801,1 - 1,5
Опубликовано 2 комментария

Промышленные бетонные полы - технология устройства

Бетонные полы

Промышленные бетонные полы - технология устройства.

Бетонные полы – во многих планах выгодный вариант. Они не требуют особого ухода, отличаются высокой прочностью, износостойкостью и долговечностью. Использование поверхностных упрочняющих материалов обеспечивает низкое влагопоглощение, адекватную химическую стойкость. Чтобы обеспечить бетонным полам высокое качество и длительный срок службы, главное полностью соблюдать технологию работы. Бетон является достаточно дешевым, а оттого и доступным материалом, с ним довольно просто работать. При этом не требуется никаких особых навыков и знаний. Технология устройства промышленного бетонного пола проста. Промышленный бетонный пол с упрочнённым верхним слоем Бетонные полы - одна из главных частей промышленного здания или склада, несущих основные механические нагрузки. При строительстве новых зданий перед укладкой бетонного пола требуется тщательно изучить несущую способность основы и присутствие грунтовых вод. Такие исследования проводят профильные учреждения или специализированные компании. На основании полученных данных и технического задания выдается проектное решение конструкции бетонного пола, учитывающее такие параметры как: толщина бетона, марка бетона, схема армирования, схема температурных швов, наличие гидроизоляции, рекомендуемый тип покрытия, ровность пола и т.д. Для того чтобы дать экономически целесообразное проектное решение конструкции пола, необходимо знать предполагаемые нагрузки на бетонные полы. Нагрузки на бетонные полы учитываются как механические, так и динамические, статические, температурные и химические. Устройство бетонных полов и оснований под полимерные покрытия регламентируются СНИП 2.03.13-88. Однако, для получения полов высокого качества, ряд положений этого документа требуют некоторых дополнений.

Этап I. Планирование и подготовка.

Технология устройства бетонных полов может выполняться как по грунтовому основанию, так и по существующему бетонному основанию. При укладке бетонного пола на грунт необходимо тщательно сделать основание. Это необходимо во избежание в дальнейшем растрескивания и разрушения бетонного пола, вследствие просадки некачественно сделанного основания. Вначале для каждого основания производится анализ грунтов объекта и расчет необходимой толщины подушки. Общая толщина подушки из песка и щебня может быть различной в зависимости от видов грунтов в основании, степени их промерзания, высоты поднятия грунтовых вод и т.п. Величина основания для промышленного бетонного пола колеблется в пределах от 0,2 до 1 м. Состав и толщины основания указаны в проектной документации, если таковая вообще имеется. Подготовка основания под промышленный бетонный пол Верхний слой подушки основания должен быть обязательно утрамбован и расклинен мелким щебнем фракции 5-20, с помощью виброкатка или виброплиты.

Устройство подушки под бетонные полы.

Сначала песчаную подушку необходимо послойно уплотнить. Для этого изначально укладывается подсыпка, толщина которой приблизительно на четверть больше расчётной. Затем песок проливают водой, и с помощью виброкатков или виброплит толщина песчаной подушки приводится к расчётной. После укладки песчаной подушки, производится укладка щебеночной или гравийной подушки крупной фракции с последующим послойным уплотнением. Существует мнение, что для получения качественной "расклинки" основания можно использовать песок вместо мелкого щебня. Песок не расклинивает крупный щебень, и он не трамбуется. Поэтому на нашем предприятии при подготовке грунтового основания обязательно используется мелкий щебень.

Грунтовые основания для бетонных полов

Традиционно для выполнения работ, необходимых для устройства грунтового основания, используется тяжелая строительная дорожная техника - грейдеры, погрузчики. Эта техника не имеет лазерных нивелирующих устройств. Поэтому, показатель уровня ровности поверхности основания получается с большими отклонениями от заданной отметки как мин ±5 см. При таких показателях ровности основания получится огромный перерасход бетона до 30%, что приводит к существенному удорожанию конечной стоимости бетонного пола. После трамбовки мы выполняем работы по устройству верхнего тонкого слоя основания из гранитного отсева, фракции 0-4мм. Толщина слоя отсева 2-5см. Например, отметка основания, выполненная и передаваемая субподрядчиками, составляет в лучшем случае 3-5 см от нулевой отметки низа бетонного пола. Применяя лазерный нивелир для разравнивания и трамбовки гранитного отсева, достигается ровность верхнего слоя основания ± 5 мм. Такая ровность позволяет полностью избежать перерасхода бетона при устройстве пола. Даже при толщинах бетонного пола, к примеру, 80-130 мм возможно получить абсолютно точные фактические толщины производимых полов.

Уплотнение грунта под бетонные полы.

Если бетонные полы устраиваются по песчаной или гравиево-песчаной основе, необходимо определить коэффициент уплотнения грунта. Если коефициент меньше 0,98, то основа уплотняется при помощи виброоборудования. При укладке пола на старое существующее бетонное основание необходимо произвести его тщательную нивелировку и определить минимальные и максимальные отметки поверхности. После этого, необходимо определить возможную минимальную толщину нового пола, с учетом необходимых нагрузок на новый пол.

Бетонные полы поверх старых.

Если старые бетонные полы имеют крупные трещины, то их необходимо расширить и заполнить ремонтным составом, состоящим либо из полимера, либо из цементно-песчаной смеси на напрягающем цементе. Участки бетонного основания, не поддающиеся ремонту, необходимо полностью демонтировать и уложить новый бетон. Имеющиеся на отдельных участках основания, недопустимые перепады по высоте, не позволяющие сделать необходимую минимальную толщину пола снимаются шлифовально-мозаичной или фрезеровочной машиной по бетону. Образовавшуюся при этом пыль удаляют при помощи промышленных пылесосов. Когда старые бетонные полы очистили и выровняли, на него следует нанести слой грунтовки. Грунтовку наносят валиком или кистью равномерно по поверхности. Затем грунтовка должна просохнуть в течении необходимого периода времени, которое указывает производитель.

Что необходимо знать до начала возведения бетонных полов?

Внимание! Независимо от времени года, для качественного возведения промышленного бетонного пола необходимо обеспечить оптимальные условия на месте проведения работ. Оптимальная температура в помещении, где выполняются работы от +5 до +25°С при влажности воздуха от 60 до 80%. Также необходимо устранить сквозняки, пыль и попадание на будущий бетонный пол прямых солнечных лучей. Для обеспечения оптимальных условий рекомендуется соорудить солнце- и ветрозащитные временные сооружения. Устройство бетонной плиты пола осуществляется "картами" - прямоугольниками определенного размера. Размер "карты" определяется площадью пола, уложенного за рабочую смену, т.е. производительностью. По периметру карты устанавливается опалубка. Линия опалубки, по возможности, должна совпадать с рисунком деформационных швов, так как в большинстве случаев это место стыка уже схватившегося и свежеуложенного бетона. Вдоль всего направления транспортного потока в эксплуатируемом помещении выставляются направляющие. Они устанавливаются согласно проекта, учитывая конструктивные особенности здания, расположения несущих элементов, колонн, фундаментов, ворот. На больших площадях предусматриваются температурные швы между технологическими картами. Уровень установки направляющих контролируется нивелиром. Он должен обеспечивать минимальную толщину бетонного пола в пределах 60-70 мм. Крепление направляющих происходит электросваркой к металлическим анкерам. Вертикальные фрагменты конструкции отсекаются от бетонной плоскости пола, посредством демпферной изоляции вокруг фундаментов, колонн и по периметру всех стен. В качестве демпферной изоляции используется пенопласта, пенополиуретан или вспененный полиэтилен. При необходимости устраивается гидроизоляция.

Армирование бетонных полов

Армирование в бетонных полах осуществляется в соответствии с проектом в зависимости от предполагаемой несущей нагрузки. Чаще всего в бетонных полах используется дорожная сетка из арматуры класса Вр-1 диаметром стержней 5 мм с размером ячейки 150X150 мм, или 100X100 мм. В тех случаях, когда пол подвергается воздействию повышенных нагрузок целесообразно применить вместо дорожной сетки или вместе с ней арматурный каркас. Арматурный каркас, как правило, вяжется по месту из стержней арматуры диаметром от 8 до 16 мм. Армирование может также производиться металлической фиброй. Устройство промышленных бетонных полов В помещениях со средней и большой интенсивностью воздействия на пол жидкостей, уклоны полов, даже под монолитные полимерные покрытия, должны быть не менее 1,5%. Уклоны следует создавать измененяя толщину бетонного основания.  Толщина бетонного покрытия должна быть минимум  80 мм,  класс бетона по прочности на сжатие не ниже В22,5, как для чистых полов, так и для бетонных оснований.

Этап II. Приготовление бетона и его укладка.

Для устройства бетонных промышленных полов следует использовать бетонную смесь марки не ниже М300, процент вовлеченного воздуха которой составляет не более 3%. Бетон должен быть без воздухоулавливающих, солевых добавок, поскольку есть риск отслаивания топпинга и появления после затирки белого налета на поверхности. Во время приемки бетона на одну карту не должно быть большого разрыва между миксерами, она должна идти непрерывно. В противном случае это может привести к появлению трещин. Если интервал принятия разных порций бетона в карту превышает 30 - 40 минут, то необходимо устройство технологических стыков с последующей их нарезкой. Укладка бетона при устройстве промышленных полов Условия и площадь объекта не всегда позволяют миксеру подъехать вплотную к месту укладки, поэтому довольно часто используют бетононасос. Уплотнение и разравнивание бетонной смеси производится: глубинным вибратором, поверхностным вибратором, виброрейкой или с помощью правила по "жидким маякам". При этом виброрейку следует применять осторожно, чтобы не допустить расслоения бетонной смеси. Обработка проводится на малых оборотах, не более чем за 2 прохода. В некоторых случаях для этих целей используют суперпластификатор.

Виброрейка для укладки бетонных полов.

При укладке и разравнивании бетонной смеси с помощью виброрейки необходимо сначала установить направляющие под виброрейку на уровне нулевой отметки и тщательно выставить их по горизонту. В процессе работы нужно следить за тем, чтобы направляющие не были сбиты. После этого на направляющие монтируется виброрейка. Бетонная смесь заливается на подготовленное основание и разравнивается с таким расчетом, чтобы ее верх был немного выше уровня виброрейки (это зависит от степени уплотняемости бетонной смеси виброрейкой). После виброрейку тянут по направляющим. Бетонная смесь под действием вибрации оседает до нужного уровня и разравнивается. При этом нужно следить, чтобы виброрейка постоянно скользила по поверхности бетона. В тех местах, где бетонная смесь оседает ниже уровня виброрейки, бетонную смесь добавляют лопатой в необходимом количестве. бетонные полы технология устройства По окончанию протягивания проверяется отметка бетона при помощи нивелира или контрольного уровня.

Этап III. Затирка бетона.

После того, как завершен процесс укладки, уплотнения и разравнивания бетонной смеси, необходимо сделать технологический перерыв: бетон должен набрать определенную пластическую прочность. В зависимости от влажности и температуры окружающей среды этот перерыв составляет, как правило, от 2 до 7 часов. За это время бетон схватывается так, что взрослый человек, наступая на его поверхность, оставляет след глубиной 3мм. После этого, его поверхность обрабатывается затирочной машиной для бетона или как их ещё называют вертолетом для затирки бетона. Бетон, примыкающий к конструкциям, колоннам, дверным проемам и стенам, должен быть обработан в первую очередь, так как в этих местах он набирает прочность быстрее, чем на остальной площади. Затирочные машины для шлифовки бетонных полов Если проектом предусмотрено наличие упрочненного верхнего слоя - топпинга, то перед затиркой бетона по поверхности распределяют упрочнитель, представляющий собой сухую смесь из цемента, полимеров, пигментов и наполнителей: кварцевый, корундовый или металлический, в зависимости от нагрузок. Топпинг втирается в свежий бетон спустя несколько часов после его укладки, если применяется вакуумирование, время до укладки упрочнителей значительно сокращается, взаимодействуя с имеющейся в бетоне водой. При этом образуется монолитная структура с бетонным основанием. Топпинг немного удорожает стоимость бетонного пола, но его применение позволяет получить массу преимуществ:
  • Увеличение износостойкости бетонной поверхности;
  • Стойкость к ударам и сильному абразивному износу;
  • Отсутствие пыли;
  • Повышение срока службы бетонного пола;
  • Привлекательный внешний вид, широкая цветовая гамма;
  • Верхний высокопрочный слой составляет единое целое с бетонным основанием и полностью исключает его отслоение;
  • Получение готового к эксплуатации покрытия за один рабочий цикл;
  • Не требуется особых условий для устройства полов;
  • Снижает стоимость покрытия;
  • Значительно сокращаются сроки проведения работ по сравнению с другими покрытиями;
  • Позволяет раньше, чем при других покрытиях, начать эксплуатацию помещения.

Нанесение топпинга тележкой-дозатор.

Тележка дозатор для нанесения топпинга на пол Далее на обработанную поверхность вносится топпинг в количестве 50-60 % от нормы. Нанесение материала осуществляется при помощи тележки-дозатора, что обеспечивает равномерность нанесения топпинга. Во время нанесения упрочняющего материала на бетонные полы используются средства индивидуальной защиты респираторы, противопылевые очки, перчатки.

Первая затирка бетонного пола затирочной машиной с диском

После того как нанесённый топпинг впитает влагу из бетонной плиты, и поверхность потемнеет, производится первая затирка диском. Затирку следует начинать около стен, колонн, дверных проемов. Затирать следует до получения однородно перемешанной смеси на поверхности, полного пропитывания смеси "цементным молоком" и полного соединения смеси с поверхностью бетона. Рекомендуется делать движение диска «змейкой» или «лесенкой», т.е. начинают движение от начала бетонирования вправо, потом ниже  прохода в левую сторону, затем вниз и вправо.

Вторая затирка бетонного пола затирочной машиной с диском

После завершения первой затирки следует немедленно внести на бетонные полы оставшуюся часть смеси. Это делается для того, чтобы она успела пропитаться влагой из "цементного молока" до испарения воды. Упрочняющая смесь вносится так, чтобы компенсировать, возможно неравномерное внесение первой части. После того как топпинг пропитается влагой, что будет видно по потемнению поверхности, сразу же приступают ко второй затирке дисками до полного пропитывания смеси. При необходимости в целях дополнительного уплотнения поверхности обработку диском можно повторить.

Третья затирка бетонного пола затирочной машиной с лопостями

Окончательная затирка поверхности производится лопастями. Интервал между затирками определяется по состоянию поверхности - она должна стать матовой, и при прикосновении не пачкать руки. Признаком окончания затирки служит образование ровной гладкой поверхности, так называемого "зеркала". Не желательно для облегчения заглаживания подливать воду на поверхность, это приводит к появлению светлых пятен и ослаблению слоя бронирования, также не рекомендуется злоупотреблять полировкой поверхности, это может привести к ухудшению физико-механических показателей бронированного слоя. Расход упрочняющей смеси, т. е. топпинга зависит от степени эксплуатационных нагрузок на бетонные полы. Стандартное использование материалов натурального - серого цвета при средней нагрузке на пол - 3-5 кг/м²,  при большой нагрузке - 5-8 кг/ м². Расход цветных материалов - от 5 до 7 кг/м². В некоторых случаях расход материала может достигать 8-9 кг/м².

Этап IV. Покрытие лаком. Нарезка и герметизация швов.

Почти сразу по окончанию полировальных работ на бетонные полы наносится жидкий полиакрилатный лак-импрегнат. Использование этого материала предотвращает от пересыхания готового пола. Попадая в массу слоя бронирования, импрегнат препятствует агрессивному действию воды, слабо концентрированных растворов, нефтепродуктов, не основных видов кислот и щелочей. Расход импрегнатора примерно составляет 150мл на м². Обрабатывая часть поверхности, примыкающей к уже устроенной, нужно защитить свежую лакированную и полируемую поверхность пола от механического повреждения. В случае появления царапин - еще раз обработать участок импрегнатом. Лак-импрегнатор должен иметь однородную консистенцию без пузырьков и подтеков. Он наносится валиком, раклей или распылителем. Нарезка швов на промышленных бетонных полах

Нарезка швов по бетону

Примерно на третьи сутки нарезаются температурно-усадочные швы. Данные швы обеспечивают компенсацию температурно-усадочных процессов, происходящих в бетонном полу при твердении бетона и температурных линейных деформаций плиты при ее эксплуатации. Карту нарезки швов составляют таким образом, чтобы швы нарезались с шагом не реже 40-а толщин плиты, если в проекте не указано иное. Кроме того, швы должны совпадать с осями колонн, со швами плит перекрытий, а при двухслойном армировании с границами верхнего слоя арматуры. Во время планирования направлений резки следует избегать появления Т-образных перекрестков, появления острых <30° углов, на стыках швов. Глубина шва должна быть не менее 40 мм и не менее 1/3 толщины бетонной плиты покрытия, ширина 3-5 мм. Расположение усадочных швов на промышленных бетонных полах Перед герметизацией швов необходимо удалить пыль, обработать стенки швов праймером или лаком-импрегнатором. Ради экономии использования герметика шов нужно зачеканить делатационной вставкой на глубину, соответствующую слою герметика (приблизительно 5-10 мм), после этого заполнить его полиуретановым герметиком. Для равномерности заполнения швов во время герметизации используется шпатель. Необходимо исключить механические действия на поверхности свежеизготовленного пола и попадания бытовых и строительных абразивов: песка, щебени, металлической стружки, сварочной окалины и т. п. Проектные эксплуатационные характеристики изготовленный бетонный пол приобретает в течение нескольких недель.

Проблемы возникающие при устройстве бетонных полов

Трещина на промышленном бетонном полу Устройство бетонных полов очень важный и ответственный процесс. Поскольку бороться с последствиями неправильно выполненных работ практически невозможно. Наиболее часто встречаемая проблема при устройстве бетонных полов - это образование трещин в затвердевшем бетоне. Трещинообразование может быть вызвано различными причинами. Причины образования трещин в бетонном полу:
  • Нарушение компонентного состава бетонной смеси (увеличенное содержание частиц с высокой удельной поверхностью);
  • Недостаточное армирование;
  • Резкие перепады в окружающей среде.
Устранение причины образования трещин:
  • Корректировка состава бетонной смеси;
  • Дополнительное армирование с использованием металлической фибры;
  • Понижение водно-цементного соотношения за счет введения пластификатора бетона;
  • Обработка поверхности кюрингами для препятствия быстрому испарению влаги.

Проблема «отслоения» верхнего слоя.

Причины способные вызвать отслоения верхнего слоя бетонного пола могут быть самыми различными:
  • Недостаточное или избыточное вибрирование бетона. Недостаточное вибрирование не обеспечивает выход вовлеченного воздуха, а избыточное вибрирование, особенно бетона с конусом осадки более 125 мм, с помощью виброрейки, поднимает на поверхность слишком толстый растворный слой;
  • Для затирки, в том числе ручной, используется инструмент, не имеющий требуемой высокой плоскостности;
  • Поверхность бетона слишком быстро испаряет воду, что может происходить в жаркую ветреную погоду с низкой влажностью или при сквозняках, вследствие чего свежеуложенный бетон кажется готовым к затирке, хотя на самом деле выделение воды и вовлеченного воздуха продолжается;
  • Содержание в бетоне вовлеченного воздуха превышает норму. При использовании воздухововлекающих добавок, а также добавок или примесей, содержащих кремнезем, скорость выделения воды и её количество значительно уменьшаются, что создает впечатление готовности бетона к затирке;
  • Основание, на которое укладывается бетон, имеет более низкую температуру, чем бетон, вследствие чего верхняя часть бетона высыхает и твердеет быстрее нижней и создается впечатление готовности поверхности к отделке;
  • Превышение содержания цемента в бетонах высоких марок или большого количества очень мелких фракций в песке замедляет высыхание бетона, что может послужить преждевременной отделке поверхности;
  • Упрочняющая смесь для верхнего слоя наносится преждевременно, особенно на бетон с повышенным содержанием воздуха.

Меры по повышению качества бетонных полов

Бороться с вышеперечисленными сложностями можно следующим образом. Прежде всего, следует выполнять все операции по укладке, растаскиванию и разравниванию бетона как можно быстрее. Бетон должен быть уложен до того, как на поверхности начнет образовываться цементное тесто и очень осторожно оценивать готовность поверхности к затирке, особенно в тех случаях, когда такая готовность ожидается позже. Если в процессе первоначальной затирки свежеуложенного бетона появляются пузыри, то следует попробовать разорвать поверхность деревянным полутерком или гладилкой. Отделка поверхности затирочными машинами должна начинаться как можно позже и по её окончании необходимо защитить поверхность от чрезмерного испарения с помощью кюрингов. Использование полиэтиленовой пленки для предотвращения от избыточного пересыхания поверхности может привести к появлению пятен. Особенно это бывает заметно на цветных полах. На внутренних площадках, т. е. в закрытых помещениях рекомендуется использовать бетон без воздухововлекающих добавок, а бетон с повышенным содержанием воздуха для наружных площадок, подверженных замораживанию, не затирать механически с уплотнением поверхности. При бетонировании зимой отслоения менее вероятны при использование ускоряющих добавок. Не рекомендуется применять сухие упрочнители на бетонных смесях с воздухововлекающими добавками. Но главной проблемой бетонного пола все-таки является трещинообразование связанное с усадкой цемента. При использовании бетона с портландцементом полностью исключить это явление невозможно. Но можно значительно снизить показатель усадки. Этого можно достичь следующими методами:
  • Использование пластификаторов;
  • Применение металлической фибры для армирования;
  • Покрытие бетона кюрингами;
  • Использование пропиток упрочнителей.
Опубликовано Оставить комментарий

Наливной пол - рекомендации по устройству

Устройство наливного пола

Наливной пол - рекомендации по устройству.

Наливной пол - рекомендации по устройству Наливной пол — это вид напольных покрытий, который постепенно становится все более популярным. Прочные и практичные наливные полы можно сделать и использовать в домашних условиях. Что такое наливные полы? Это специальная полимерная смесь, которая разводится до определенного состояния и выливается на пол. Благодаря природному свойству жидкостей растекаться, состав заполняет все неровности пола, а его поверхность сама выравнивается и становится строго горизонтальной. Застывая, смесь становится очень прочной. Такие полы экологически безопасны и отлично смотрятся в современной квартире. Ряд уникальных качеств выгодно отличает их от остальных напольных покрытий. Кроме того, сделать наливной пол своими руками не составит большого труда.

Преимущества наливных полов.

О преимуществах данного покрытия можно рассуждать очень долго. Они зависят от состава смеси и правильности нанесения.
  • Высокая износостойкость и ударная прочность, длительный срок службы;
  • Нетоксичность и пожаробезопасность;
  • Герметизация и защита от влаги и пыли;
  • Широкий ценовой диапазон позволяет выбрать подходящий по цене состав;
  • Не требуется сложная предварительная подготовка перед устройством;
  • Простота и технологичность установки.

Устройство наливных полов.

Полимерный наливной пол заливается только тогда, когда окончены все другие монтажные и отделочные работы. Наливной пол вы сможете сделать самостоятельно сразу из готовых смесей – их сегодня можно приобрести в любом строительном магазине. Важно только максимально точно следовать прилагаемой к ним инструкции. Этап I. Подготовка к работе. Не смотря на то, что на большинстве фотографий вы увидите мастеров во время работы над заливкой пола совершенно без защитных средств – это не значит, что так правильно. Соблюдая необходимые меры личной безопасности при устройстве наливных полов возможно избежать различных профессиональных заболеваний и несчастных случаев. Для работ понадобятся следующие средства индивидуальной защиты: респираторы, резиновые перчатки и обувью с твердой подошвой. Итак, давайте перечислим основные инструменты, которые вам понадобятся во время устройства полимерного наливного пола:
  • Игольчатый аэрационный валик, который предназначен для удаления пузырьков воздуха в базовом слое;
  • Низкооборотная дрель с лопастной насадкой для смешивания компонентов;
  • Валики синтепоновые, которыми удобно грунтовать нулевую поверхность;
  • Ракля – именно этим инструментом нужно будет наносить эпоксидный состав;
  • Шпатели – ими выравниваем пол в самых труднодоступных местах;
  • Пылесос – им необходимо обязательно очищать всю поверхность от пыли и излишек кварцевого песка.
  • Индивидуальные средства защиты;
  • Краскоступы – игольчатые подошвы для обуви, в которых можно ходить прямо по свежезалитому наливному полу. Краскоступы возможно заменить на альпинистские кошки для обуви.
Перед началом работ следует ознакомиться с мерами предосторожности:
  • Если полимерный состав попадет вам в глаза – быстро промойте их большим количеством воды;
  • Если попал на руки – потрите этот участок кожи смоченной в бензине тряпкой;
  • Не открывайте металлическую тару с полимером металлическим предметом – если от этого возникнет искра, состав может загореться;
  • Берегите емкость с полимерным составом от прямых солнечных лучей и открытого огня.
Этап II. Подготовка основания. Это – самый важный этап, от которого напрямую зависит, каким получится ваш наливной пол. Начинать работы вы можете практически на любом основании – бетоне, керамической плитке и просто сухом и чистом полу, которое в последствии не даст усадки и не содержит влаги. Проверяем основание на пригодность. Для начала с помощью уровня проверьте имеющееся основание на наличие неровностей – отклонение не должно превышать 4 мм, иначе будет большой расход строительных материалов. Если пол неровный – исправьте выемки при помощи шпаклевочной смеси и шлифовальной машины. При повышенной влажности требуется нанесение гидроизоляционного слоя. Черновой пол должен быть сухим, ровным и неподвижным. А потому, если вы не хотите предварительно заливать пол стяжкой, можете применить алюминиевые пластины. Сама стяжка, конечно же, намного лучше – она делает пол куда более жестким и повышает его звуконепроницаемость. Но вес у такого пола уже больше, что не всегда подходит для легких каркасных дачных домиков. Если вы будете заливать наливной пол на древесину, то заранее её обязательно обработайте наждачной бумагой, отшлифованную поверхность необходимо обезжирить. Итоговая влажность древесного основания перед устройством наливного пола не должна превышать 10%. Бетонный пол должен иметь показатель по влажности не более 4%. Все трещины и сколы заранее хорошо заделайте, и выровняйте всю поверхность. Для того, чтобы закрыть пористый слой бетона необходимо нанести грунт. Дополнительно посыпаем на грунт кварцевый песок, который улучшит сцепление с наливным полом. Если же вы будете наносить полимерный пол на плитку – обязательно проверьте, все ли плиты хорошо держатся. Если нашли брак (плитка "играет"), то необходимо устранить данные дефекты, например зашпаклевав их. Если наливной пол  укладывается на поверхность с заметным перепадом высот, то заливайте смесь в два этапа: сначала толстый слой, а после высыхания выровняйте все неровности шпаклевкой и залейте финишный слой. Этапы устройства полимерных наливных полов К бетонному основанию пола для заливки наливного полимерного покрытия предъявляются свои требования:
  • Прочность на сжатие у бетонного пола должна быть не менее 25 МПа, а толщина – не менее 60 мм;
  • Поверхность должна быть идеально ровной, без пыли или трещин;
  • Для уверенности используйте пылесос;
  • Перепад пола на 2 метрах не может превышать 2 мм – это важно;
  • Влажность бетонного основания на 20 мм глубины не должна превысить 6%;
  • Очень важно качество самого бетона – в нем не допустимы известковые материалы.
Оптимальная температура для работ по заливке пола – не ниже 15°С, а относительная влажность – не выше 75%. У бетона верхний слой, как считают специалисты, достаточно мягкий – из-за присутствующем в нем цементного молочка. А потому, даже если бетонное основание кажется вам идеально ровным, все равно необходима шлифовка. В сильной шлифовке потребности нет – достаточно только снять само цементное молочко. А для этого в домашних условиях подойдет и болгарка с алмазной чашкой, а в промышленных масштабах используют шлифовальные или затирочные машины. Для снятия цементного молочка по свежему бетону хорошо подойдет вертолет для затирки бетона, но если необходимо убрать существенные дефекты по хорошо схватившемуся бетону, то в данной ситуации необходимо применение шлифовальных машин. Вот какими способами можно подготовить основание к заливке полимерным полом:
  • Машинная или ручная дробеструйка, которая сразу устраняет самые видные дефекты поверхности и куски, которые держались слабо;
  • Шлифовка, которая убирает даже трудноступные дефекты, но образует много пыли. Пыль забивается в микротрещины, и сцепление со следующим слоем уже будет слабее;
  • Пылесос, который может решить предыдущую проблему;
  • Заделка трещин шпаклевочным полиуретановым составом;
  • Защита основания специальной пропиткой – импрегнатом, при помощи валика или краскопульта. По возможности добавьте в пропитку кварцевый песок – чтобы она лучше схватывалась с наливным составом благодаря шероховатости.
Укладка демпферной ленты Укладка демпферной ленты Укладка демпферной ленты и гидроизоляции в виде полиэтиленовой пленки Компенсация линейного температурного расширения стяжки и наливного пола при устройстве компенсируется прокладкой демпферной ленты по периметру всех стен примыкая одним краем к основанию наливного пола или стяжки. Лучше, чтобы ширина ленты была на 2-5 см больше высоты стяжки. После полного застывания стяжки демпферная лента не вынимается, а обрезается строительным ножом по уровню пола. При устройстве тонкослойной стяжки или наливных полов демпферная лента не используется, в этих условиях она будет абсолютно бесполезной. Фактически, демпферная лента — это пенополиэтилен, нарезанный на полосы необходимой ширины. Демпферную ленту возможно нарезать своими руками, причем это будет дешевле по сравнению с покупкой специальной демпферной ленты. После того как основание для наливного пола готово, проверяем остаточную влажность, чтобы убедиться, что все готово к дальнейшей работе. Для этого малярным скотчем наклеиваем на основание один цельный кусок полиэтиленовой пленки. На следующий день: если на пленке образовался конденсат или основание под пленкой немного поменяло цвет, то работать с наливным полом пока нельзя. Этап IV. Готовим смесь к заливке. Рассчитать, сколько нужно будет для работы смеси, возможно самостоятельно. Например, на каждый квадратный метр для толщины в 1 мм примерно нужен будет один литр для заливки. Абсолютно точно до последнего грамма определить необходимое количество наливного пола не так просто – у разных производителей эти смеси идут разной консистенции, а потому, имея на руках точные параметры помещения, целесообразнее проконсультироваться у поставщика. Наиболее оптимальный температурный режим для застывания пола от 5°С до 25°С. Именно в этом промежутке смесь твердеет достаточно быстро. Важна также температура самого основания пола – она не должна опускаться ниже 4°С. Не нагревайте смесь – максимум, до какой температуры она может дойти, это 20°С. Итак, возьмите дрель с насадкой или строительный миксер, у которых есть функция вращения в реверсном и прямом направлении. Дважды перемешайте все компоненты. После первого раза состав оставьте на несколько минут, и снова все перемешайте. Если вы используете дополнительный наполнитель – добавьте его при втором смешивании. Приготовьте столько материала, чтобы вам его хватило на час работы. Необходимо приготовить такое количество раствора, которое вы можете нанести до того, как он начнет застывать. Этап V. Заливаем базовый слой. Применение валика при устройстве наливного полаИз приготовленной смеси формируем подстилающий слой. Чтобы нанести раствор, достаточно вылить его, а затем равномерно распределить по всей поверхности. Как правило, так называемые самовыравнивающиеся  смеси выравниваются гладким слоем, распределяясь по поверхности самостоятельно. Для смесей, не обладающих самовыравнивающимся свойством используются ракель с регулируемой величиной зазора, а также специальный шпатель. Последний чаще применяется для работы в труднодоступных местах. Хорошо все выравниваем, и удаляем пузырьки воздуха игольчатым валиком. После всего этого наносим финишный лицевой слой. Для того, чтобы как можно более равномерно распределить композицию в финишном лицевом слое используем раклю. Используя кварцевый песок в качестве подстилающего слоя, возможно сэкономить расход заливаемого материала в два раза. Толщина полимерных полов для домашнего использования не более 5 мм, а потому, когда высота пола должна быть больше, то заливают черновым вариантом выравнивающую стяжку, и только потом 2-3 мм наливного пола любого цвета. Также необходимо помнить, что некоторые составы сами по себе обладают свойствами финишного слоя.

Как сделать «теплый» наливной пол?

Первым делом хорошо проконсультируйтесь у поставщика, какой именно полимерный наливной пол будет абсолютно экологичен при нагреве. Но помните, что понятие «теплый пол» — относительно. Если такой пол на самом деле греет – он попросту неправильно устроен. Давайте разберемся: температура человеческой ступни 36,6°С, и все, что имеет температуру ниже этой, кожа воспринимает, как холодное. А вот в диапазоне от 30°С до 36°С пол кажется вполне комфортным. И, естественно, это не слишком большой нагрев, чтобы начали выделяться какие-то токсичные вещества прямо из полимера — в качественной смеси таковых и нет. Итак, как сделать такой пол:
  • Этап 1. Подготовьте основание, очистив и обезжирив его;
  • Этап 2. Проложите отопление согласно плану;
  • Этап 3. Если основа – древесина, то по возможности используйте специальный праймер, который улучшит адгезию с бетоном;
  • Этап 4. Как только просохнет праймер, заливайте первый слой полимерного цемента;
  • Этап 5. Теперь дайте около часа времени осесть и схватиться цементу;
  • Этап 6. После этого заливаем второй, уже финишный слой полимерного наливного пола;
  • Этап 7. Через несколько часов пол станет похож на идеально ровный каток, который при этом совершенно не скользит.
А вот теплый пол на основе водяных труб возможно сделать по такой технологии:
  • Этап 1. Первым делом – бетонная стяжка;
  • Этап 2. Проверяем на горизонталь: если пол неровный, выравниваем щебнем все перепады высот;
  • Этап 3. Снова заливаем бетонной стяжкой;
  • Этап 4. Укладываем вспененный фольгированный полиэтилен для отражающей теплоизоляции;
  • Этап 5. Закладываем трубы будущего теплого пола;
  • Этап 6. Теперь заливаем пол финишным самовыравнивающимся материалом, который подходит для "тёплых полов";
  • Этап 7. Покрываем полиуретановым грунтом;
  • Этап 8. Выкладываем полиуретановый пол;
  • Этап 9. Оставляем на двое суток высыхать.
Частые ошибки при устройстве наливных полов:
  • Если основа не была подготовлена к последующей заливке, то полимерный пол будет хрустеть и покрываться трещинами;
  • Если плохо заделаете трещины – то при заливке полимерного состава начнет выходить воздух и появятся пузыри;
  • Соринки в растворе, насекомые или волосы – из пола их потом никогда не выковыряете. Вот почему рабочая бригада от качественных подрядчиков всегда работает только в специальных костюмах, которые полностью закрывают и тело, и голову. А так же «мокроступы» для свежего покрытия;
  • Плохо смешаете компоненты – затвердение состава будет неравномерным. Появятся пятна, которые вообще никогда больше не высохнут, так и будут липнуть к обуви;
  • Замешкаетесь и вовремя не прокатаете материал валиком – он слегка наплывет и неровно затвердеет;
  • У специальной грунтовки – достаточно едкий запах, но высыхает она быстро. По возможности не дышите ею. После высыхания полимерный пол – эпоксидный, полиуретановый или метилметакрилатный – становится абсолютно безопасным для человека. Причем настолько, что применяется в медицинских и пищевых производствах. А вот в жидком состоянии им действительно лучше не дышать;
  • Смешивать два компонента пола необходимо при самых малых оборотах – не более 300 оборотов в минуту. Лучше используйте для этой цели насадку для перемешивания краски. Если будете спешить и используете большие обороты – в последствии придется долго и нудно избавляться от пузырьков воздуха, которыми насытится раствор;
  • По возможности заливкой такого пола занимайтесь вдвоем – пока один помощник замешивает состав, второй выкладывает предыдущую часть. Так у вас ничего случайно не застынет, не будет никакой суеты и спешки;
  • Удобнее всего пол заливать зигзагами, а затем разравнивать;
  • Обратите внимание и на уровень влажности воздуха – во время работ он не должен превышать 80%. Для проверки повесьте на стене гигрометр. Также во время проведения работ не допускаются сквозняки и работа приборов для обогрева воздуха.